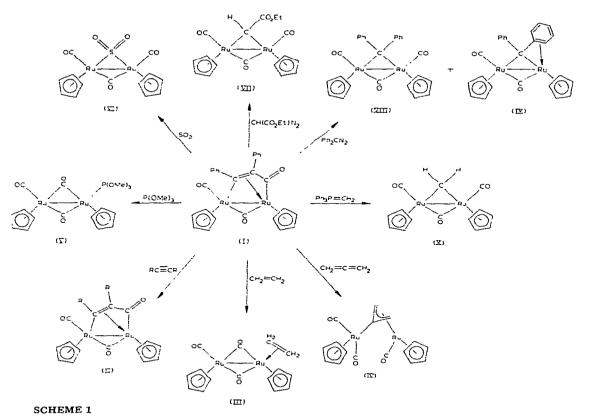
Journal of Organometallic Chemistry, 215 (1981) C30-C32 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

A CONVENIENT ENTRY INTO DIRUTHENIUM CHEMISTRY

DAVID L. DAVIES, ANDREW F. DYKE, SELBY A.R. KNOX, and MICHAEL J. MORRIS Department of Inorganic Chemistry, The University, Bristol BS8 1TS (Great Britain) (Received May 6th, 1981)

Summary


In boiling toluene, diphenylacetylene is readily displaced from the dimetallocycle [Ru₂(CO)(μ -CO) { μ -C(O)C₂Ph₂}(η -C₅H₅)₂] by a variety of reagents (P(OMe)₃, SO₂, R₂CN₂, Ph₃PCH₂) to produce [Ru₂(CO) {P(OMe)₃}(μ -CO)₂ - (η -C₅H₅)₂] or [Ru₂(CO)₂(μ -CO)(μ -L)(η -C₅H₅)₂] (L = SO₂, CR₂, CH₂) in high yield.

We recently described [1] the synthesis of $[\operatorname{Ru}_2(\operatorname{CO})(\mu-\operatorname{CO})\{\mu-\operatorname{C}(O)C_2\operatorname{Ph}_2\}$ - $(n-C_5\operatorname{H}_5)_2$] (I) by UV irradiation of $[\operatorname{Ru}_2(\operatorname{CO})_4(\eta-C_5\operatorname{H}_5)_2]$ with diphenylacetylene, a 50% yield being commonly achieved. The complex is fluxional, undergoing a rapidly reversible breaking and regeneration of the C₂Ph₂—CO bond. However, at boiling toluene temperature the C₂Ph₂—CO link is broken irreversibly in the presence of other reagents, which displace the diphenylacetylene and enter into coordination with the Ru₂(CO)₃(η -C₅H₅)₂ unit. We have previously referred briefly to the formation of acetylene (II), ethylene (III) and allyl (IV) complexes in this way [1, 2], and now report that the route may be extended to provide an apparently general and very convenient entry into diruthenium chemistry which would otherwise be inaccessible because of the low reactivity of [Ru₂(CO)₄(η -C₅H₅)₂] itself.

Each of the reactions outlined in Scheme 1 occurs very rapidly in boiling toluene, reaching completion within minutes and providing the products in very high yield after chromatographic purification.

At a rather trivial level, phosphorus ligand complexes such as V may be obtained and appear from the IR spectrum to exist as the carbonyl-bridged isomer illustrated ($\nu(CO)(CH_2Cl_2)$: 1953s and 1733s cm⁻¹), analogous to the terminally bound ethylene complex III [2, 3]. Of more importance is the formation of the bridging sulphur dioxide complex [Ru₂(CO)₂(μ -CO)(μ -SO₂)(η -C₅H₅)₂] (VI) as a yellow crystalline air-stable substance in 88% yield. The IR spectrum has carbonyl bands at 2029s, 1998m, and 1817m cm⁻¹, indicative of a structure

0022-328X/81/0000-0000/\$02.50, © 1981, Elsevier Sequoia S.A.

with pairs of *cis*-carbonyl and cyclopentadienyl ligands, and there is, in accordance, a single ¹H NMR signal at τ 4.30 between +30 and -70°C. Recently, Herrmann et al. [4] have reported the formation of a μ -SO₂ complex of dirhodium [Rh₂(CO)₂(μ -SO₂)(η -C₅H₅)₂] and drawn attention to the analogy with μ -carbene complexes. Diruthenium μ -carbene complexes are very reactive [5] and the chemistry of VI is under exploration in an extension of these studies.

Our investigations of the reactivity of μ -carbene complexes have relied chiefly on species derived [2, 3] in several steps from II and IV. Reactions of I with diazo compounds provide related complexes more directly, but a thermally fairly robust diazoalkane is required. For example, CH(CO₂Et)N₂ and Ph₂CN₂ do not react with I at room temperature, but do so rapidly under toluene reflux to afford VII (78%) and VIII, respectively. IR (ν (CO)(CH₂Cl₂): 1994s, 1959s. 1792s cm⁻¹) and ¹H NMR spectra of VII identify the presence of both *cis* (τ (CDCl₃), 0.73 (s, 1H), 4.72 (s, 10H), 5.88 (q, *J* 8 Hz, 2H), 8.78 (t, *J* 8 Hz, 3H)] and *trans* [τ (CDCl₃), 1.56 (s, 1H), 4.68 (s, 5H), 4.74 (s, 5H), 5.80 (q, *J* 8 Hz, 2H), 8.64 (t, *J* 8 Hz, 3H)) isomers but for VIII only a *cis* isomer appears to be present (ν (CO)(CH₂Cl₂): 1986s, 1942m, and 1798m cm⁻¹; ¹H NMR (CD₂Cl₂): τ 2.35–3.20m (10 H), 4.90s (10 H)). Crowding within VIII is evidently severe, because under the conditions of the synthesis decarbonylation occurs to provide IX as a coproduct (ν (CO)(CH₂Cl₂): 1939s, 1764m cm⁻¹; ¹H NMR (CDCl₃) τ 2.3–3.6m (9H), 5.14s (5H), 5.56s (5H), and 7.54 (dd, *J* 7 and 1 Hz, 1H)).

The high field shift we attribute to the proton attached to the coordinated "olefinic" bond. A very related form of this CPh_2 bridging has been observed by Curtis et al. in a dimolybdenum complex [6].

Thermally very unstable diazomethane provides no product with I, but the phosphorus ylid Ph₃P=CH₂ smoothly generates air-stable yellow crystalline $[\operatorname{Ru}_2(\operatorname{CO})_2(\mu-\operatorname{CO})(\mu-\operatorname{CH}_2)(\eta-\operatorname{C}_5\operatorname{H}_5)_2]$ (X) as a mixture of *cis* and *trans* isomers in 70% combined yield. The isomers, which may be separated by chromatography, equilibrate rapidly in CDCl₃ solution to achieve a *cis/trans* ratio of ca. 2/1. For the thermodynamically more stable *cis* isomer the ¹H NMR spectrum has signals at τ 0.84 (s, 1H), 2.48 (s, 1H), and 4.76 (s, 10H), and for the *trans* at τ 1.56 (s, 2H) and 4.68 (s, 10H). The chemistry of this μ -CH₂ complex, the most important member of the series of μ -carbene diruthenium complexes, is under active investigation. The wide range of phosphorus ylids available suggests that this route will be important in the synthesis of μ -carbene complexes.

We are grateful to the S.R.C. for the award of Research Studentships (to D.L.D. and A.F.D.) and for support, and to Johnson Matthey and Co. Ltd., for a loan of ruthenium trichloride.

References

- 1 A.F. Dyke, S.A.R. Knox, P.J. Naish, and G.E. Taylor, J. Chem. Soc., Chem. Commun., (1980) 409.
- 2 A.F. Dyke, S.A.R. Knox, and P.J. Naish, J. Organometal. Chem., 199 (1980) C47.
- 3 A.F. Dyke, S.A.R. Knox, P.J. Naish, and A.G. Orpen, J. Chem. Soc., Chem. Commun., (1980) 441.
- 4 W.A. Herrmann, J. Plank, M.L. Ziegler, and P. Wülknitz, Chem. Ber., 114 (1981) 716.
- 5 A.F. Dyke, S.A.R. Knox, P.J. Naish, and G.E. Taylor, J. Chem. Soc., Chem. Commun., (1980) 803.
- 6 L. Messerle and M.D. Curtis, J. Amer. Chem. Soc., 102 (1980) 7789.